Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 364
Filtrar
1.
Sci Rep ; 14(1): 6751, 2024 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-38514795

RESUMO

Mitochondrial Ca2+ overload can mediate mitochondria-dependent cell death, a major contributor to several human diseases. Indeed, Duchenne muscular dystrophy (MD) is driven by dysfunctional Ca2+ influx across the sarcolemma that causes mitochondrial Ca2+ overload, organelle rupture, and muscle necrosis. The mitochondrial Ca2+ uniporter (MCU) complex is the primary characterized mechanism for acute mitochondrial Ca2+ uptake. One strategy for preventing mitochondrial Ca2+ overload is deletion of the Mcu gene, the pore forming subunit of the MCU-complex. Conversely, enhanced MCU-complex Ca2+ uptake is achieved by deleting the inhibitory Mcub gene. Here we show that myofiber-specific Mcu deletion was not protective in a mouse model of Duchenne MD. Specifically, Mcu gene deletion did not reduce muscle histopathology, did not improve muscle function, and did not prevent mitochondrial Ca2+ overload. Moreover, myofiber specific Mcub gene deletion did not augment Duchenne MD muscle pathology. Interestingly, we observed MCU-independent Ca2+ uptake in dystrophic mitochondria that was sufficient to drive mitochondrial permeability transition pore (MPTP) activation and skeletal muscle necrosis, and this same type of activity was observed in heart, liver, and brain mitochondria. These results demonstrate that mitochondria possess an uncharacterized MCU-independent Ca2+ uptake mechanism that is sufficient to drive MPTP-dependent necrosis in MD in vivo.


Assuntos
Distrofia Muscular de Duchenne , Animais , Humanos , Camundongos , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Morte Celular , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Distrofia Muscular de Duchenne/patologia , Necrose/metabolismo
2.
Am J Physiol Heart Circ Physiol ; 326(1): H180-H189, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37999644

RESUMO

During select pathological conditions, the heart can hypertrophy and remodel in either a dilated or concentric ventricular geometry, which is associated with lengthening or widening of cardiomyocytes, respectively. The mitogen-activated protein kinase kinase 1 (MEK1) and extracellular signal-related kinase 1 and 2 (ERK1/2) pathway has been implicated in these differential types of growth such that cardiac overexpression of activated MEK1 causes profound concentric hypertrophy and cardiomyocyte thickening, while genetic ablation of the genes encoding ERK1/2 in the mouse heart causes dilation and cardiomyocyte lengthening. However, the mechanisms by which this kinase signaling pathway controls cardiomyocyte directional growth as well as its downstream effectors are poorly understood. To investigate this, we conducted an unbiased phosphoproteomic screen in cultured neonatal rat ventricular myocytes treated with an activated MEK1 adenovirus, the MEK1 inhibitor U0126, or an eGFP adenovirus control. Bioinformatic analysis identified cytoskeletal-related proteins as the largest subset of differentially phosphorylated proteins. Phos-tag and traditional Western blotting were performed to confirm that many cytoskeletal proteins displayed changes in phosphorylation with manipulations in MEK1-ERK1/2 signaling. From this, we hypothesized that the actin cytoskeleton would be changed in vivo in the mouse heart. Indeed, we found that activated MEK1 transgenic mice and gene-deleted mice lacking ERK1/2 protein had enhanced non-sarcomeric actin expression in cardiomyocytes compared with wild-type control hearts. Consistent with these results, cytoplasmic ß- and γ-actin were increased at the subcortical intracellular regions of adult cardiomyocytes. Together, these data suggest that MEK1-ERK1/2 signaling influences the non-sarcomeric cytoskeletal actin network, which may be important for facilitating the growth of cardiomyocytes in length and/or width.NEW & NOTEWORTHY Here, we performed an unbiased analysis of the total phosphoproteome downstream of MEK1-ERK1/2 kinase signaling in cardiomyocytes. Pathway analysis suggested that proteins of the non-sarcomeric cytoskeleton were the most differentially affected. We showed that cytoplasmic ß-actin and γ-actin isoforms, regulated by MEK1-ERK1/2, are localized to the subcortical space at both lateral membranes and intercalated discs of adult cardiomyocytes suggesting how MEK1-ERK1/2 signaling might underlie directional growth of adult cardiomyocytes.


Assuntos
Actinas , Miócitos Cardíacos , Camundongos , Ratos , Animais , Miócitos Cardíacos/metabolismo , Actinas/metabolismo , Sistema de Sinalização das MAP Quinases , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Transdução de Sinais , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Citoesqueleto/metabolismo , Camundongos Transgênicos , Hipertrofia/metabolismo , Hipertrofia/patologia , Proteínas do Citoesqueleto/metabolismo , Células Cultivadas
3.
Cell Rep ; 42(11): 113465, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37976157

RESUMO

Mitochondria use the electron transport chain to generate high-energy phosphate from oxidative phosphorylation, a process also regulated by the mitochondrial Ca2+ uniporter (MCU) and Ca2+ levels. Here, we show that MCUb, an inhibitor of MCU-mediated Ca2+ influx, is induced by caloric restriction, where it increases mitochondrial fatty acid utilization. To mimic the fasted state with reduced mitochondrial Ca2+ influx, we generated genetically altered mice with skeletal muscle-specific MCUb expression that showed greater fatty acid usage, less fat accumulation, and lower body weight. In contrast, mice lacking Mcub in skeletal muscle showed increased pyruvate dehydrogenase activity, increased muscle malonyl coenzyme A (CoA), reduced fatty acid utilization, glucose intolerance, and increased adiposity. Mechanistically, pyruvate dehydrogenase kinase 4 (PDK4) overexpression in muscle of Mcub-deleted mice abolished altered substrate preference. Thus, MCUb is an inducible control point in regulating skeletal muscle mitochondrial Ca2+ levels and substrate utilization that impacts total metabolic balance.


Assuntos
Cálcio , Mitocôndrias , Animais , Camundongos , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Ácidos Graxos/metabolismo , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo
4.
J Biol Chem ; 299(12): 105426, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37926281

RESUMO

S-palmitoylation is a reversible lipid modification catalyzed by 23 S-acyltransferases with a conserved zinc finger aspartate-histidine-histidine-cysteine (zDHHC) domain that facilitates targeting of proteins to specific intracellular membranes. Here we performed a gain-of-function screen in the mouse and identified the Golgi-localized enzymes zDHHC3 and zDHHC7 as regulators of cardiac hypertrophy. Cardiomyocyte-specific transgenic mice overexpressing zDHHC3 show cardiac disease, and S-acyl proteomics identified the small GTPase Rac1 as a novel substrate of zDHHC3. Notably, cardiomyopathy and congestive heart failure in zDHHC3 transgenic mice is preceded by enhanced Rac1 S-palmitoylation, membrane localization, activity, downstream hypertrophic signaling, and concomitant induction of all Rho family small GTPases whereas mice overexpressing an enzymatically dead zDHHC3 mutant show no discernible effect. However, loss of Rac1 or other identified zDHHC3 targets Gαq/11 or galectin-1 does not diminish zDHHC3-induced cardiomyopathy, suggesting multiple effectors and pathways promoting decompensation with sustained zDHHC3 activity. Genetic deletion of Zdhhc3 in combination with Zdhhc7 reduces cardiac hypertrophy during the early response to pressure overload stimulation but not over longer time periods. Indeed, cardiac hypertrophy in response to 2 weeks of angiotensin-II infusion is not diminished by Zdhhc3/7 deletion, again suggesting other S-acyltransferases or signaling mechanisms compensate to promote hypertrophic signaling. Taken together, these data indicate that the activity of zDHHC3 and zDHHC7 at the cardiomyocyte Golgi promote Rac1 signaling and maladaptive cardiac remodeling, but redundant signaling effectors compensate to maintain cardiac hypertrophy with sustained pathological stimulation in the absence of zDHHC3/7.


Assuntos
Cardiomiopatias , Miócitos Cardíacos , Animais , Camundongos , Aciltransferases/genética , Aciltransferases/metabolismo , Cardiomegalia/metabolismo , Cardiomiopatias/genética , Cardiomiopatias/metabolismo , Histidina/metabolismo , Lipoilação , Camundongos Transgênicos , Miócitos Cardíacos/metabolismo
5.
Cells ; 12(17)2023 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-37681905

RESUMO

RATIONALE: The adult cardiac extracellular matrix (ECM) is largely comprised of type I collagen. In addition to serving as the primary structural support component of the cardiac ECM, type I collagen also provides an organizational platform for other ECM proteins, matricellular proteins, and signaling components that impact cellular stress sensing in vivo. OBJECTIVE: Here we investigated how the content and integrity of type I collagen affect cardiac structure function and response to injury. METHODS AND RESULTS: We generated and characterized Col1a2-/- mice using standard gene targeting. Col1a2-/- mice were viable, although by young adulthood their hearts showed alterations in ECM mechanical properties, as well as an unanticipated activation of cardiac fibroblasts and induction of a progressive fibrotic response. This included augmented TGFß activity, increases in fibroblast number, and progressive cardiac hypertrophy, with reduced functional performance by 9 months of age. Col1a2-loxP-targeted mice were also generated and crossed with the tamoxifen-inducible Postn-MerCreMer mice to delete the Col1a2 gene in myofibroblasts with pressure overload injury. Interestingly, while germline Col1a2-/- mice showed gradual pathologic hypertrophy and fibrosis with aging, the acute deletion of Col1a2 from activated adult myofibroblasts showed a loss of total collagen deposition with acute cardiac injury and an acute reduction in pressure overload-induce cardiac hypertrophy. However, this reduction in hypertrophy due to myofibroblast-specific Col1a2 deletion was lost after 2 and 6 weeks of pressure overload, as fibrotic deposition accumulated. CONCLUSIONS: Defective type I collagen in the heart alters the structural integrity of the ECM and leads to cardiomyopathy in adulthood, with fibroblast expansion, activation, and alternate fibrotic ECM deposition. However, acute inhibition of type I collagen production can have an anti-fibrotic and anti-hypertrophic effect.


Assuntos
Cardiomiopatias , Colágeno Tipo I , Animais , Camundongos , Cardiomegalia/genética , Colágeno Tipo I/genética , Fibrose
6.
Sci Adv ; 9(34): eadi2767, 2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37624892

RESUMO

Mitochondrial permeability transition pore (MPTP) formation contributes to ischemia-reperfusion injury in the heart and several degenerative diseases, including muscular dystrophy (MD). MD is a family of genetic disorders characterized by progressive muscle necrosis and premature death. It has been proposed that the MPTP has two molecular components, the adenine nucleotide translocase (ANT) family of proteins and an unknown component that requires the chaperone cyclophilin D (CypD) to activate. This model was examined in vivo by deleting the gene encoding ANT1 (Slc25a4) or CypD (Ppif) in a δ-sarcoglycan (Sgcd) gene-deleted mouse model of MD, revealing that dystrophic mice lacking Slc25a4 were partially protected from cell death and MD pathology. Dystrophic mice lacking both Slc25a4 and Ppif together were almost completely protected from necrotic cell death and MD disease. This study provides direct evidence that ANT1 and CypD are required MPTP components governing in vivo cell death, suggesting a previously unrecognized therapeutic approach in MD and other necrotic diseases.


Assuntos
Distrofias Musculares , Animais , Camundongos , Necrose , Morte Celular , Modelos Animais de Doenças
7.
Proc Natl Acad Sci U S A ; 120(19): e2213696120, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37126682

RESUMO

To better understand the genetic basis of heart disease, we identified a variant in the Flightless-I homolog (FLII) gene that generates a R1243H missense change and predisposes to cardiac remodeling across multiple previous human genome-wide association studies (GWAS). Since this gene is of unknown function in the mammalian heart we generated gain- and loss-of-function genetically altered mice, as well as knock-in mice with the syntenic R1245H amino acid substitution, which showed that Flii protein binds the sarcomeric actin thin filament and influences its length. Deletion of Flii from the heart, or mice with the R1245H amino acid substitution, show cardiomyopathy due to shortening of the actin thin filaments. Mechanistically, Flii is a known actin binding protein that we show associates with tropomodulin-1 (TMOD1) to regulate sarcomere thin filament length. Indeed, overexpression of leiomodin-2 in the heart, which lengthens the actin-containing thin filaments, partially rescued disease due to heart-specific deletion of Flii. Collectively, the identified FLII human variant likely increases cardiomyopathy risk through an alteration in sarcomere structure and associated contractile dynamics, like other sarcomere gene-based familial cardiomyopathies.


Assuntos
Actinas , Cardiomiopatias , Humanos , Animais , Camundongos , Actinas/metabolismo , Sarcômeros/metabolismo , Estudo de Associação Genômica Ampla , Citoesqueleto de Actina/metabolismo , Cardiomiopatias/metabolismo , Mamíferos/genética , Proteínas dos Microfilamentos/metabolismo , Transativadores/metabolismo , Tropomodulina/metabolismo , Proteínas do Citoesqueleto/metabolismo , Proteínas Musculares/metabolismo
8.
Front Physiol ; 14: 1054169, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36733907

RESUMO

Introduction: The ribosomal protein L3-like (RPL3L) is a heart and skeletal muscle-specific ribosomal protein and paralogue of the more ubiquitously expressed RPL3 protein. Mutations in the human RPL3L gene are linked to childhood cardiomyopathy and age-related atrial fibrillation, yet the function of RPL3L in the mammalian heart remains unknown. Methods and Results: Here, we observed that mouse cardiac ventricles express RPL3 at birth, where it is gradually replaced by RPL3L in adulthood but re-expressed with induction of hypertrophy in adults. Rpl3l gene-deleted mice were generated to examine the role of this gene in the heart, although Rpl3l -/- mice showed no overt changes in cardiac structure or function at baseline or after pressure overload hypertrophy, likely because RPL3 expression was upregulated and maintained in adulthood. mRNA expression analysis and ribosome profiling failed to show differences between the hearts of Rpl3l null and wild type mice in adulthood. Moreover, ribosomes lacking RPL3L showed no differences in localization within cardiomyocytes compared to wild type controls, nor was there an alteration in cardiac tissue ultrastructure or mitochondrial function in adult Rpl3l -/- mice. Similarly, overexpression of either RPL3 or RPL3L with adeno-associated virus -9 in the hearts of mice did not cause discernable pathology. However, by 18 months of age Rpl3l -/- null mice had significantly smaller hearts compared to wild type littermates. Conclusion: Thus, deletion of Rpl3l forces maintenance of RPL3 expression within the heart that appears to fully compensate for the loss of RPL3L, although older Rpl3l -/- mice showed a mild but significant reduction in heart weight.

9.
Circulation ; 147(9): 746-758, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36695175

RESUMO

BACKGROUND: Acute kidney injury (AKI) is a short-term life-threatening condition that, if survived, can lead to renal insufficiency and development of chronic kidney disease. The pathogenesis of AKI and chronic kidney disease involves direct effects on the heart and the development of hypertrophy and cardiomyopathy. METHODS: We used mouse models of ischemia/reperfusion AKI and unilateral ureteral obstruction to investigate the role of IL-33 (interleukin-33) and its receptor-encoding gene Il1rl1 (also called ST2L [suppression of tumorigenicity 2]) in cardiac remodeling after AKI. Mice with cell type-specific genetic disruption of the IL-33/ST2L axis were used, and IL-33 monoclonal antibody, adeno-associated virus encoding IL-33 or ST2L, and recombinant IL-33, as well. RESULTS: Mice deficient in Il33 were refractory to cardiomyopathy associated with 2 models of kidney injury. Treatment of mice with monoclonal IL-33 antibody also protected the heart after AKI. Moreover, overexpression of IL-33 or injection of recombinant IL-33 induced cardiac hypertrophy or cardiomyopathy, but not in mice lacking Il1rl1. AKI-induced cardiomyopathy was also reduced in mice with cardiac myocyte-specific deletion of Il1rl1 but not in endothelial cell- or fibroblast-specific deletion of Il1rl1. Last, overexpression of the ST2L receptor in cardiac myocytes recapitulated induction of cardiac hypertrophy. CONCLUSIONS: These results indicate that IL-33 released from the kidney during AKI underlies cardiorenal syndrome by directly signaling to cardiac myocytes, suggesting that antagonism of IL-33/ST2 axis would be cardioprotective in patients with kidney disease.


Assuntos
Injúria Renal Aguda , Cardiomiopatias , Interleucina-33 , Insuficiência Renal Crônica , Traumatismo por Reperfusão , Animais , Camundongos , Injúria Renal Aguda/etiologia , Cardiomegalia/patologia , Cardiomiopatias/genética , Cardiomiopatias/complicações , Proteína 1 Semelhante a Receptor de Interleucina-1/genética , Rim/patologia , Miócitos Cardíacos/patologia , Insuficiência Renal Crônica/complicações , Traumatismo por Reperfusão/patologia
10.
Cell Stem Cell ; 30(1): 96-111.e6, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36516837

RESUMO

The efficacy and safety of gene-therapy strategies for indications like tissue damage hinge on precision; yet, current methods afford little spatial or temporal control of payload delivery. Here, we find that tissue-regeneration enhancer elements (TREEs) isolated from zebrafish can direct targeted, injury-associated gene expression from viral DNA vectors delivered systemically in small and large adult mammalian species. When employed in combination with CRISPR-based epigenome editing tools in mice, zebrafish TREEs stimulated or repressed the expression of endogenous genes after ischemic myocardial infarction. Intravenously delivered recombinant AAV vectors designed with a TREE to direct a constitutively active YAP factor boosted indicators of cardiac regeneration in mice and improved the function of the injured heart. Our findings establish the application of contextual enhancer elements as a potential therapeutic platform for spatiotemporally controlled tissue regeneration in mammals.


Assuntos
Elementos Facilitadores Genéticos , Terapia Genética , Coração , Infarto do Miocárdio , Miócitos Cardíacos , Regeneração , Animais , Camundongos , Proliferação de Células , Coração/fisiologia , Infarto do Miocárdio/genética , Infarto do Miocárdio/terapia , Miócitos Cardíacos/metabolismo , Peixe-Zebra/genética , Terapia Genética/métodos , Regeneração/genética
11.
Methods Mol Biol ; 2587: 467-478, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36401044

RESUMO

In vivo testing of glucocorticoid steroids in dystrophic mice offers important insights in benefits and risks of those drugs in the pathological context of muscular dystrophy. Frequency of dosing changes the spectrum of glucocorticoid effects on muscle and metabolic homeostasis. Here, we describe a combination of non-invasive and invasive methods to quantitatively discriminate the specific effects of intermittent (once-weekly) versus mainstay (once-daily) regimens on muscle fibrosis, muscle function, and metabolic homeostasis in murine models of Duchenne and limb-girdle muscular dystrophies.


Assuntos
Distrofia Muscular do Cíngulo dos Membros , Distrofia Muscular de Duchenne , Camundongos , Animais , Glucocorticoides/farmacologia , Glucocorticoides/metabolismo , Modelos Animais de Doenças , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/patologia , Distrofia Muscular do Cíngulo dos Membros/tratamento farmacológico , Distrofia Muscular do Cíngulo dos Membros/patologia
12.
13.
Sci Adv ; 8(39): eabp8701, 2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-36179023

RESUMO

How do neurons match generation of adenosine triphosphate by mitochondria to the bioenergetic demands of regenerative activity? Although the subject of speculation, this coupling is still poorly understood, particularly in neurons that are tonically active. To help fill this gap, pacemaking substantia nigra dopaminergic neurons were studied using a combination of optical, electrophysiological, and molecular approaches. In these neurons, spike-activated calcium (Ca2+) entry through Cav1 channels triggered Ca2+ release from the endoplasmic reticulum, which stimulated mitochondrial oxidative phosphorylation through two complementary Ca2+-dependent mechanisms: one mediated by the mitochondrial uniporter and another by the malate-aspartate shuttle. Disrupting either mechanism impaired the ability of dopaminergic neurons to sustain spike activity. While this feedforward control helps dopaminergic neurons meet the bioenergetic demands associated with sustained spiking, it is also responsible for their elevated oxidant stress and possibly to their decline with aging and disease.


Assuntos
Cálcio , Neurônios Dopaminérgicos , Trifosfato de Adenosina/metabolismo , Ácido Aspártico , Cálcio/metabolismo , Neurônios Dopaminérgicos/metabolismo , Malatos/metabolismo , Malatos/farmacologia , Mitocôndrias/metabolismo , Oxidantes , Substância Negra/metabolismo
14.
J Mol Cell Cardiol ; 171: 117-132, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36007455

RESUMO

In response to myocardial infarction (MI), quiescent cardiac fibroblasts differentiate into myofibroblasts mediating tissue repair. One of the most widely accepted markers of myofibroblast differentiation is the expression of Acta2 which encodes smooth muscle alpha-actin (SMαA) that is assembled into stress fibers. However, the requirement of Acta2/SMαA in the myofibroblast differentiation of cardiac fibroblasts and its role in post-MI cardiac repair remained unknown. To answer these questions, we generated a tamoxifen-inducible cardiac fibroblast-specific Acta2 knockout mouse line. Surprisingly, mice that lacked Acta2 in cardiac fibroblasts had a normal post-MI survival rate. Moreover, Acta2 deletion did not affect the function or histology of infarcted hearts. No difference was detected in the proliferation, migration, or contractility between WT and Acta2-null cardiac myofibroblasts. Acta2-null cardiac myofibroblasts had a normal total filamentous actin level and total actin level. Acta2 deletion caused a significant compensatory increase in the transcription level of non-Acta2 actin isoforms, especially Actg2 and Acta1. Moreover, in myofibroblasts, the transcription levels of cytoplasmic actin isoforms were significantly higher than those of muscle actin isoforms. In addition, we found that myocardin-related transcription factor-A is critical for myofibroblast differentiation but is not required for the compensatory effects of non-Acta2 isoforms. In conclusion, the Acta2 deletion does not prevent the myofibroblast differentiation of cardiac fibroblasts or affect the post-MI cardiac repair, and the increased expression and stress fiber formation of non-SMαA actin isoforms and the functional redundancy between actin isoforms are able to compensate for the loss of Acta2 in cardiac myofibroblasts.


Assuntos
Actinas , Infarto do Miocárdio , Miofibroblastos , Actinas/genética , Actinas/metabolismo , Animais , Diferenciação Celular/genética , Fibroblastos/metabolismo , Camundongos , Infarto do Miocárdio/metabolismo , Miofibroblastos/metabolismo , Tamoxifeno/farmacologia
15.
Mol Metab ; 62: 101528, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35717025

RESUMO

OBJECTIVE: Mitochondrial capacity is critical to adapt the high energy demand of the heart to circadian oscillations and diseased states. Glucocorticoids regulate the circadian cycle of energy metabolism, but little is known about how circadian timing of exogenous glucocorticoid dosing directly regulates heart metabolism through cardiomyocyte-autonomous mechanisms. While chronic once-daily intake of glucocorticoids promotes metabolic stress and heart failure, we recently discovered that intermittent once-weekly dosing of exogenous glucocorticoids promoted muscle metabolism in normal and obese skeletal muscle. However, the effects of glucocorticoid intermittence on heart metabolism and heart failure remain unknown. Here we investigated the extent to which circadian time of dosing regulates the effects of the glucocorticoid prednisone in heart metabolism and function in conditions of single pulse or chronic intermittent dosing. METHODS AND RESULTS: In WT mice, we found that prednisone improved cardiac content of NAD+ and ATP with light-phase dosing (ZT0), while the effects were blocked by dark-phase dosing (ZT12). The drug effects on mitochondrial function were cardiomyocyte-autonomous, as shown by inducible cardiomyocyte-restricted glucocorticoid receptor (GR) ablation, and depended on an intact cardiomyocyte clock, as shown by inducible cardiomyocyte-restricted ablation of Brain and Muscle ARNT-like 1 (BMAL1). Conjugating time-of-dosing with chronic intermittence, we found that once-weekly prednisone improved metabolism and function in heart after myocardial injury dependent on circadian time of intake, i.e. with light-phase but not dark-phase dosing. CONCLUSIONS: Our study identifies cardiac-autonomous mechanisms through which circadian-specific intermittent dosing reconverts glucocorticoid drugs to metabolic boosters for the heart.


Assuntos
Relógios Circadianos , Insuficiência Cardíaca , Animais , Relógios Circadianos/fisiologia , Glucocorticoides/metabolismo , Glucocorticoides/farmacologia , Insuficiência Cardíaca/metabolismo , Camundongos , Miócitos Cardíacos/metabolismo , Prednisona/metabolismo , Prednisona/farmacologia
16.
Nat Commun ; 13(1): 2940, 2022 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-35618700

RESUMO

Skeletal muscle can repair and regenerate due to resident stem cells known as satellite cells. The muscular dystrophies are progressive muscle wasting diseases underscored by chronic muscle damage that is continually repaired by satellite cell-driven regeneration. Here we generate a genetic strategy to mediate satellite cell ablation in dystrophic mouse models to investigate how satellite cells impact disease trajectory. Unexpectedly, we observe that depletion of satellite cells reduces dystrophic disease features, with improved histopathology, enhanced sarcolemmal stability and augmented muscle performance. Mechanistically, we demonstrate that satellite cells initiate expression of the myogenic transcription factor MyoD, which then induces re-expression of fetal genes in the myofibers that destabilize the sarcolemma. Indeed, MyoD re-expression in wildtype adult skeletal muscle reduces membrane stability and promotes histopathology, while MyoD inhibition in a mouse model of muscular dystrophy improved membrane stability. Taken together these observations suggest that satellite cell activation and the fetal gene program is maladaptive in chronic dystrophic skeletal muscle.


Assuntos
Distrofias Musculares , Células Satélites de Músculo Esquelético , Animais , Modelos Animais de Doenças , Camundongos , Desenvolvimento Muscular , Músculo Esquelético/metabolismo , Distrofias Musculares/metabolismo , Células Satélites de Músculo Esquelético/metabolismo , Células-Tronco
19.
PLoS One ; 16(7): e0254667, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34260645

RESUMO

The world is currently in a pandemic of COVID-19 (Coronavirus disease-2019) caused by a novel positive-sense, single-stranded RNA ß-coronavirus referred to as SARS-CoV-2. Here we investigated rates of SARS-CoV-2 infection in the greater Cincinnati, Ohio, USA metropolitan area from August 13 to December 8, 2020, just prior to initiation of the national vaccination program. Examination of 9,550 adult blood donor volunteers for serum IgG antibody positivity against the SARS-CoV-2 Spike protein showed an overall prevalence of 8.40%, measured as 7.56% in the first 58 days and 9.24% in the last 58 days, and 12.86% in December 2020, which we extrapolated to ~20% as of March, 2021. Males and females showed similar rates of past infection, and rates among Hispanic or Latinos, African Americans and Whites were also investigated. Donors under 30 years of age had the highest rates of past infection, while those over 60 had the lowest. Geographic analysis showed higher rates of infectivity on the West side of Cincinnati compared with the East side (split by I-75) and the lowest rates in the adjoining region of Kentucky (across the Ohio river). These results in regional seroprevalence will help inform efforts to best achieve herd immunity in conjunction with the national vaccination campaign.


Assuntos
Anticorpos Antivirais/sangue , Doadores de Sangue/estatística & dados numéricos , COVID-19/epidemiologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , COVID-19/imunologia , Feminino , Humanos , Imunoglobulina G/sangue , Masculino , Pessoa de Meia-Idade , Ohio/etnologia , Pandemias , Estudos Soroepidemiológicos , Adulto Jovem
20.
Circulation ; 144(7): 539-555, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34111939

RESUMO

BACKGROUND: Pulmonary hypertension (PH) is a common complication in patients with alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV), a severe congenital disorder associated with mutations in the FOXF1 gene. Although the loss of alveolar microvasculature causes PH in patients with ACDMPV, it is unknown whether increasing neonatal lung angiogenesis could prevent PH and right ventricular (RV) hypertrophy. METHODS: We used echocardiography, RV catheterization, immunostaining, and biochemical methods to examine lung and heart remodeling and RV output in Foxf1WT/S52F mice carrying the S52F Foxf1 mutation (identified in patients with ACDMPV). The ability of Foxf1WT/S52F mutant embryonic stem cells to differentiate into respiratory cell lineages in vivo was examined using blastocyst complementation. Intravascular delivery of nanoparticles with a nonintegrating Stat3 expression vector was used to improve neonatal pulmonary angiogenesis in Foxf1WT/S52F mice and determine its effects on PH and RV hypertrophy. RESULTS: Foxf1WT/S52F mice developed PH and RV hypertrophy after birth. The severity of PH in Foxf1WT/S52F mice directly correlated with mortality, low body weight, pulmonary artery muscularization, and increased collagen deposition in the lung tissue. Increased fibrotic remodeling was found in human ACDMPV lungs. Mouse embryonic stem cells carrying the S52F Foxf1 mutation were used to produce chimeras through blastocyst complementation and to demonstrate that Foxf1WT/S52F embryonic stem cells have a propensity to differentiate into pulmonary myofibroblasts. Intravascular delivery of nanoparticles carrying Stat3 cDNA protected Foxf1WT/S52F mice from RV hypertrophy and PH, improved survival, and decreased fibrotic lung remodeling. CONCLUSIONS: Nanoparticle therapies increasing neonatal pulmonary angiogenesis may be considered to prevent PH in ACDMPV.


Assuntos
Técnicas de Transferência de Genes , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/terapia , Nanopartículas , Síndrome da Persistência do Padrão de Circulação Fetal/complicações , Alvéolos Pulmonares/anormalidades , Fator de Transcrição STAT3/genética , Remodelação das Vias Aéreas/genética , Animais , Biomarcadores , Modelos Animais de Doenças , Suscetibilidade a Doenças , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Ecocardiografia , Fibrose , Fatores de Transcrição Forkhead/deficiência , Terapia Genética , Humanos , Hipertensão Pulmonar/diagnóstico , Hipertensão Pulmonar/metabolismo , Hipertrofia Ventricular Direita/diagnóstico , Hipertrofia Ventricular Direita/etiologia , Hipertrofia Ventricular Direita/metabolismo , Camundongos , Camundongos Transgênicos , Densidade Microvascular/genética , Miofibroblastos/metabolismo , Síndrome da Persistência do Padrão de Circulação Fetal/genética , Síndrome da Persistência do Padrão de Circulação Fetal/patologia , Fator de Transcrição STAT3/administração & dosagem , Nanomedicina Teranóstica/métodos , Resultado do Tratamento , Remodelação Vascular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...